d0l — Quadrature dO01sle

NAG C Library Function Document
nag 1d quad brkpts 1 (d01slc)

1 Purpose

nag 1d _quad brkpts 1 (dO1slc) is a general purpose integrator which calculates an approximation to the
integral of a function f(z) over a finite interval [a, b]:

b
I= | f(x)dx.

where the integrand may have local singular behaviour at a finite number of points within the integration
interval.

2 Specification

#include <nag.h>
#include <nagdOl.h>

void nag_1ld_quad_brkpts_1 (double (*f) (double x, Nag_User *comm),
double a, double b, Integer nbrkpts, double brkpts[], double epsabs,
double epsrel, Integer max_num_subint, double *result,
double *abserr, NAG_QuadProgress *gp, NAG_User *comm, NagError *fail)

3 Description

This function is based upon the QUADPACK routine QAGP (Piessens et al. (1983)). It is very similar to
nag 1d _quad gen 1 (dOlsjc), but allows the user to supply ‘break-points’, points at which the function is
known to be difficult. It is an adaptive routine, using the Gauss 10-point and Kronrod 21-point rules. The
algorithm described by De Doncker (1978), incorporates a global acceptance criterion (as defined by
Malcolm and Simpson (1976)) together with the e-algorithm (Wynn (1956)) to perform extrapolation. The
user-supplied ‘break-points’ always occur as the end-points of some sub-interval during the adaptive
process. The local error estimation is described by Piessens er al. (1983).

4 Parameters
1: f — function supplied by user Function
The function f, supplied by the user, must return the value of the integrand f at a given point.

The specification of f is:

double f(double x, Nag_User *comm)

1: x — double Input
On entry: the point at which the integrand f must be evaluated.

2: comm — Nag User *

On entry/on exit: pointer to a structure of type Nag User with the following member:

p — Pointer Input/Output

On entry/on exit: the pointer comm—p should be cast to the required type, e.g.,
struct user *s = (struct user *)comm->p, to obtain the original object’s
address with appropriate type. (See the argument comm below.)

[NP3491/6] do01slc.1

d01sle NAG C Library Manual

2: a — double Input

On entry: the lower limit of integration, a.

3: b — double Input

On entry: the upper limit of integration, b. It is not necessary that a < b.

4: nbrkpts — Integer Input
On entry: the number of user-supplied break-points within the integration interval.

Constraint: nbrkpts > 0.

5: brkpts[nbrkpts] — double Input
On entry: the user-specified break-points.

Constraint: the break-points must all lie within the interval of integration (but may be supplied in

any order).

6: epsabs — double Input
On entry: the absolute accuracy required. If epsabs is negative, the absolute value is used. See
Section 6.1.

7: epsrel — double Input
On entry: the relative accuracy required. If epsrel is negative, the absolute value is used. See
Section 6.1.

8: max_num_subint — Integer Input

On entry: the upper bound on the number of sub-intervals into which the interval of integration may
be divided by the function. The more difficult the integrand, the larger max_num_subint should
be.

Suggested values: a value in the range 200 to 500 is adequate for most problems.

Constraint: max_num_subint > 1.

9: result — double * Output

On exit: the approximation to the integral I.

10: abserr — double * Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
|I—result|.

11: qp — Nag_QuadProgress *

Pointer to structure of type Nag_QuadProgress with the following members:

num_subint — Integer Output

On exit: the actual number of sub-intervals used.

fun_count — Integer Output

On exit: the number of function evaluations performed by nag 1d quad brkpts 1.

d01slc.2 [NP3491/6]

d0l — Quadrature dO01sle

5

sub_int_beg pts — double * Output
sub_int_end_pts — double * Output
sub_int_result — double * Output
sub_int_error — double * Output

On exit: these pointers are allocated memory internally with max_num_subint elements. If
an error exit other than NE_INT ARG _LT, NE 2 INT ARG _LE or NE_ ALLOC_FAIL
occurs, these arrays will contain information which may be useful. For details, see Section 6.

Before a subsequent call to nag 1d quad brkpts 1 is made, or when the information
contained in these arrays is no longer useful, the user should free the storage allocated by
these pointers using the NAG macro NAG_FREE.

comm — Nag User *

On entry/on exit: pointer to a structure of type Nag User with the following member:

p — Pointer Input/Output

On entry/on exit: the pointer p, of type Pointer, allows the user to communicate information

to and from the user-defined function f(). An object of the required type should be declared

by the user, e.g., a structure, and its address assigned to the pointer p by means of a cast to

Pointer in the calling program, e.g., comm.p = (Pointer)s&s. The type Pointer is void *.
fail — NagError * Input/Output
The NAG error parameter (see the Essential Introduction).

Users are recommended to declare and initialise fail and set fail.print = TRUE for this function.

Error Indicators and Warnings

NE_INT_ARG_LT

On entry, max_num_subint must not be less than 1: max_num_subint = <value>.
On entry, nbrkpts must not be less than 0: nbrkpts = <value>.

NE_2 INT_ARG_LE

On entry, max_num_subint = <value> while nbrkpts = <value>. These parameters must satisfy
max_num_subint > nbrkpts.

NE_ALLOC_FAIL

Memory allocation failed.

NE_QUAD_MAX_SUBDIV

The maximum number of subdivisions has been reached: max_num_subint = <value>.

The maximum number of subdivisions has been reached without the accuracy requirements being
achieved. Look at the integrand in order to determine the integration difficulties. If the position of a
local difficulty within the interval can be determined (e.g., a singularity of the integrand or its
derivative, a peak, a discontinuity, etc.) you will probably gain from splitting up the interval at this
point and calling the integrator on the sub-intervals. If necessary, another integrator, which is
designed for handling the type of difficulty involved, must be used. Alternatively, consider relaxing
the accuracy requirements specified by epsabs and epsrel, or increasing the value of
max_num_subint.

NE_QUAD_ROUNDOFF_TOL

Round-off error prevents the requested tolerance from being achieved: epsabs = <value>,
epsrel = <value>.

The error may be underestimated. Consider relaxing the accuracy requirements specified by epsabs
and epsrel.

[NP3491/6] dolslc.3

dO01sle NAG C Library Manual

NE_QUAD_BAD_SUBDIV
Extremely bad integrand behaviour occurs around the sub-interval (<value>, <value>).
The same advice applies as in the case of NE_ QUAD_MAX SUBDIV.
NE_QUAD_ROUNDOFF_EXTRAPL

Round-off error is detected during extrapolation.
The requested tolerance cannot be achieved, because the extrapolation does not increase the
accuracy satisfactorily; the returned result is the best that can be obtained.
The same advice applies as in the case of NE_QUAD_MAX_ SUBDIV.
NE_QUAD_NO_CONV

The integral is probably divergent, or slowly convergent.
Please note that divergence can occur with any error exit other than NE_INT_ARG_LT,
NE_2 INT ARG _LE and NE_ALLOC_FAIL.

NE_QUAD_BRKPTS_INVAL

On entry, break points outside (a, b): a = <value>, b = <value>.

6 Further Comments
The time taken by nag 1d quad brkpts 1 depends on the integrand and the accuracy required.

If the function fails with an error exit other than NE INT ARG _LT, NE 2 INT ARG _LE or
NE_ALLOC_FAIL, then the user may wish to examine the contents of the structure qp. These contain the
end-points of the sub-intervals used by nag 1d _quad brkpts 1 along with the integral contributions and
error estimates over the sub-intervals.

Specifically, for ¢ = 1,2,...,n, let r; denote the approximation to the value of the integral over the sub-
interval [a;, b;] in the partition of [a,b] and e; be the corresponding absolute error estimate.

Then, [f f(z)dz ~r; and result = > r; unless the function terminates while testing for divergence of
the integral (see Section 3.4.3 of Piessens et al. (1983)). In this case, result (and abserr) are taken to be
the values returned from the extrapolation process. The value of n is returned in num_subint, and the
values a;, b;, ; and e; are stored in the structure qp as

a; = sub_int_beg_pts[i — 1],
b, = sub_int_end_pts[i — 1],
r; = sub_int_result[i — 1] and

e; = sub_int_error[i — 1].

6.1 Accuracy
The function cannot guarantee, but in practice usually achieves, the following accuracy:
|I — result| < tol
where
tol = max{|epsabs|, |epsrel| x |I|}

and epsabs and epsrel are user-specified absolute and relative error tolerances. Moreover it returns the
quantity abserr which, in normal circumstances, satisfies

|I — result| < abserr < tol.

6.2 References

De Doncker E (1978) An adaptive extrapolation algorithm for automatic integration ACM SIGNUM Newsl.
13 (2) 12-18

d01slc.4 [NP3491/6]

d0l — Quadrature

d01slc

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM Trans.

Math. Software 1 129-146

Piessens R, De Doncker-Kapenga E, Uberhuber C and Kahaner D (1983) QUADPACK, A Subroutine

Package for Automatic Integration Springer-Verlag

Wynn P (1956) On a device for computing the e,,(S,,) transformation Math. Tables Aids Comput. 10

91-96

7 See Also

nag 1d quad gen 1 (dOlsjc)
nag 1d quad osc 1 (dOlskc)

8 Example

To compute

8.1 Program Text
/* nag_ld_quad_brkpts_1(dOlslc) Example Program
*

* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*
*

Mark 6 revised, 2000.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagdOl.h>

static double f(double x, Nag_User *comm) ;
main ()

{
double a, b;

double epsabs, abserr, epsrel, brkpts[l], result;

Integer nbrkpts;
Nag_QuadProgress qgp;
Integer max_num_subint;
static NagError fail;
Nag_User comm;

Vprintf ("dOlslc Example Program Results\n");
nbrkpts = 1;
epsabs = 0.0;

epsrel = 0.001;

a = 0.0;

b =1.0;
max_num_subint = 200;
brkpts[0] = 1.0/7.0;

[NP3491/6]

d0l1slc.5

dO01sle NAG C Library Manual

dO0lslc(f, a, b, nbrkpts, brkpts, epsabs, epsrel, max_num_subint,
&result, &abserr, &gp, &comm, &fail);

Vprintf ("a - lower limit of integration = %10.4f\n", a);

Vprintf ("b - upper limit of integration = %10.4f\n", b);

Vprintf ("epsabs - absolute accuracy requested = %9.2e\n", epsabs);
(

Vprintf ("epsrel - relative accuracy requested = %9.2e\n\n", epsrel);
Vprintf ("brkpts[0] - given break-point = %10.4f\n", brkpts([0]);
if (fail.code != NE_NOERROR)
Vprintf ("$s\n", fail.message);
if (fail.code != NE_INT_ARG_LT && fail.code != NE_2_INT_ARG_LE &&
fail.code != NE_ALLOC_FAIL)

/* Free memory used by qgp */
NAG_FREE (gp.sub_int_beg_pts);

NAG_FREE (gp.sub_int_end_pts);
NAG_FREE (gp.sub_int_result);
NAG_FREE(gp.sub_int_error);
}
if (fail.code != NE_INT_ARG_LT && fail.code != NE_2_INT_ARG_LE
&& fail.code != NE_QUAD_BRKPTS_INVAL && fail.code != NE_ALLOC_FAIL)
{
Vprintf ("result - approximation to the integral = %9.5f\n", result);
Vprintf ("abserr - estimate of the absolute error = %9.2e\n", abserr);
Vprintf ("gp.fun_count - number of function evaluations = %41d\n",
gp.fun_count) ;
Vprintf ("gp.num_subint - number of subintervals used = %41d\n",

gp.nhum_subint) ;
ex1t (EXIT_SUCCESS);

}
ex1t (EXIT_FAILURE) ;

static double f(double x, Nag _User *comm)

{

double a;

a = FABS(x-1.0/7.0);

return (a != 0.0) ? pow(a, -0.5): 0.0;
}

8.2 Program Data

None.

8.3 Program Results

dOlslc Example Program Results

a - lower limit of integration = 0.0000

b - upper limit of integration = 1.0000
epsabs - absolute accuracy requested = 0.00e+00
epsrel - relative accuracy requested = 1.00e-03
brkpts[0] - given break-point = 0.1429

result - approximation to the integral = 2.60757
abserr - estimate of the absolute error = 5.46e-14
gp.fun_count - number of function evaluations = 462
gp.num_subint - number of subintervals used = 12

d0lslc.6 (last) [NP3491/6]

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

